金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

初二下册数学

来源:学大教育     时间:2014-06-29 18:04:08


要想学好数学,不仅要把知识点掌握牢固,还要做大量的习题来巩固我们的知识点,避免我们养成眼高手低的坏毛病,为了让大家更加轻松,更加牢固的掌握数学知识,我们学大教育的小编编辑了初二下册数学,希望能够帮助到数学成绩不好的同学。

反比例函数知识放送:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数表达式

x是自变量,y是x的函数

y=k/x=k·1/x

xy=k

y=k·x^(-1) (即:y等于x的负一次方,此处x必须为一次方)

y=k/x(k为常数且k≠0,x≠0)

若y=k/nx此时比例系数为:k/n

自变量的取值范围  ① 在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。

解析式 y=k/x 其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,即 {x|x≠0,x∈R}。下面是一些常见的形式:

y=k/x=k·1/x

xy=k

y=k·x^(-1)

y=k\x(k为常数(k≠0),x不等于0)

反比例函数图象

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

知识拓展:反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

⑴ 去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵ 解整式方程,得到整式方程的解。

⑶ 检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

一、不等关系

※1、 一般地,用符号"<"(或"≤"), ">"(或"≥")连接的式子叫做不等式.

¤2、要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.

※3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.

非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0

非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0

二、不等式的基本性质

※1、掌握不等式的基本性质,并会灵活运用:

(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c, a-c>b-c.

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc, .

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a>b,并且c<0,那么ac

※2、比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

a>b <===> a-b>0

a=b <===> a-b=0

a a-b<0

(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

三、不等式的解集:

※1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

※2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.

¤3、不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:

①边界:有等号的是实心圆圈,无等号的是空心圆圈;

②方向:大向右,小向左

四、一元一次不等式:

※1、 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.

※2、解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.

※3、解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1(不等号的改变问题)

※4、 一元一次不等式基本情形为ax>b(或ax

①当a>0时,解为 ;

②当a=0时,且b<0,则x取一切实数;

当a=0时,且b≥0,则无解;

③当a<0时, 解为 ;

¤5、不等式应用的探索(利用不等式解决实际问题)

列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如"大于"、"小于"、"不大于"、"不小于"等含义;

②设: 设出适当的未知数;

③列: 根据题中的不等关系,列出不等式;

④解: 解出所列的不等式的解集;

⑤答: 写出答案,并检验答案是否符合题意.

五、一元一次不等式与一次函数

六、一元一次不等式组

※1、 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.

※2、一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.

几个不等式解集的公共部分,通常是利用数轴来确定.

※3、解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.

两个一元一次不等式组的解集的四种情况(a、b为实数,且a

一元一次不等式 解集 图示 叙述语言表达

x>b 两大取较大

x>a 两小取小

a

无解 在大小分离没有解

(是空集)

以上就是我们学大教育为大家编辑的初二下册数学的全部内容了,希望同学们能够认真利用这些知识点,再加上做一些练习题,巩固我们的知识点。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956